位置栏目

胡芹  特任研究员
主要研究方向:新型光电子器件设计与集成芯片,新原理/新材料半导体器件
电话:
邮箱:qinhu20@ustc.edu.cn
办公室:北校区融合楼214室

 

个人简介

胡芹博士现任中国科学技术大学微电子学院特任研究员,博士生导师,入选中国科学院人才计划和安徽省人才计划。主要从事新型光电半导体器件与集成的相关研究,基于新型钙钛矿半导体、宽禁带半导体、有机共轭聚合物等新型功能性材料,构筑高性能光电子器件,包括光电探测器、X射线探测成像、光伏器件等。同时结合同步辐射X-ray原位表征、超快光谱、电子显微镜等先进技术,最终建立微纳结构-物化属性-器件性能之间的关联。

近年来,胡芹博士在 Science、Science Advance、 Nature Communications、 Joule、 Advanced Materials、 ACS Nano等顶级期刊发表论文70余篇,h因子34,i10因子58。以第一/共一/共通讯作者发表论文20余篇, 多篇为ESI高引用文章、ESI热点文章、杂志封面文章等。作为主要发明人,已授权中国专利8项。长期受邀担任Nature Communication、Advanced Materials、Small等领域内10余个知名期刊审稿人,在国际知名学术会议APS、SPIE、MRS 等会上做学术汇报20余场。与加州大学伯克利分校、美国劳伦斯伯克利国家实验室、美国可再生能源国家实验室、牛津大学、瑞士洛桑联邦理工学院、北京大学、中科院微电子所、上海交通大学、香港大学等十余个国内外著名研究机构,保持长期合作与交流,并取得一系列研究成果。研究成果得到全球580多个科研机构的3000多位业界同仁,在860多个专业杂志上引用超6000次(Web of Science/Google Scholar),也受到众多学术媒体的报道和引用。入职科大后,主要讲授《半导体器件原理》、《微电子专业基础实验》、《电子信息类前沿课程》、《电子信息类实践课程》和《“科学与社会”研讨课》等课程。

个人经历
  • 2008-2012 山东大学,学士,微电子

  • 2012-2017 北京大学,博士,光学

  • 2015-2016 美国劳伦斯伯克利国家实验室,访问学生

  • 2017-2020 美国劳伦斯伯克利国家实验室/麻省大学阿姆斯特分校,博士后

  • 2020-至今 中国科学技术大学信息科学技术学院/微电子学院,特任研究员

荣誉
  • 2024年,安徽省教学成果特等奖(本科生教学集体奖)

  • 2022年,安徽省教学成果一等奖(研究生教学集体奖)

  • 2021年,中科院人才计划,安徽省人才计划

  • 2018-2020年,连续三年美国物理学会APS-GERA学术会议资助(American Physical Society)的GERA Energy Workshop Award奖

  • 2017年,“2017年中国电子科技十大进展” (《电子科技学刊》评选)

  • 2017年,北京市优秀毕业生,北京大学优秀毕业生

  • 2016年,美国劳伦斯伯克利国家实验室ALS科学亮点奖

  • 2015-2016年,美国劳伦斯伯克利国家实验室ALS先进光源博士生奖学金

  • 2015年,国家奖学金

  • 2012年,山东省优秀毕业生,山东大学优秀毕业生

论文

课题组文章详细列表请参考:

Google Scholar:https://scholar.google.com/citations?hl=en&user=3w7AngcAAAAJ&view_op=list_works&sortby=pubdate


  1. Liu, J.; Chen, Y.; Tan, P.; Liu, T.; Hu, M.; Sun, M.; Cheng, L.; Ma, X.; Zhang, Y.; Hu, Q.*; “Defect Mitigation in Lead-Free Cs3Bi2I9 Single Crystals for High Performance X-Ray Detection and Imaging”, IEEE Electron Device Letters, 2024, 45, 1036.

  2. Wang, H.; Kong, Z.; Tang, X.; Du, J.; Lin, H.; Li, B.; Wang, Y.; Zhou, Z.; Miao, Y.; Zhao, X.; Hu, Q*; Radamson, H.*; “High-performance GeSi/Ge Multi-quantum Well Photodetector on A Ge-buffered Si Substrate”, Optical Letters, 2024, 49, 2793.

  3. Yang, X.; Yang, Y, Meng, H.; Li, Y.*; Hu, Q.*; “Temporal Decoupling-Based Machine Learning Framework for Precise Efficiency Prediction in Perovskite Solar Cells”, 2024, The Journal of Physical Chemistry C, 2024, DOI: https://doi.org/10.1021/acs.jpcc.4c01715(封面文章)

  4. Zhao, Z.†; Sun, M.†; Ji, Y.†; Mao, K.; Huang, Z.; Yuan, C.; Yang, Y.; Ding, H.; Yang , Y.; Li, Y.*; Chen, W.*; Zhu, J.; Wei, J.; Xu, J.; Paritmongkol, W, Abate, A.; Xiao, Z.; He, L.*; Hu, Q.*; “Efficient Homojunction Tin Perovskite Solar Cells Enabled by Gradient Germanium Doping”, Nano Letters, 2024, 18, 5513. (封面文章)

  5. Yang, Y.†; Li, G.†; Zhao, L. †; Tan, P.; Li, Y.*; L. S.; Tan, L.; Deng, C., Wang, S.; Zhao, Z.; Yuan, C.; Ding, L.; Liang, Z.; Zhu, J.; Guan, Y.; Hou, C.; Tang, P.; Li, Q.; Liu, H.; Yang, Y.; Abate, A.; Shyue, J.; Wu, J.*; Russell, T.P.; Hu, Q.*;“A Catalyst-Like System Enables Efficient Perovskite Solar Cells”, Advanced Materials, 2024, 36, 2311145.

  6. Ma, X.; Hou, X.; Tan, P.; Ding, M.; Zhao, X.*; Yang, Y.; Xu, G.; Hu, Q*; Long, S.*; “Fast Speed Ga2O3 Solar-Blind Photodetectors With Low Temperature Process Engineering”, IEEE Electron Device Letters, 2023, 44, 1861.

  7. Wang, H.; Kong, Z.; Su, J.; Li, B.; Wang, Y.; Miao, Y.; Zhou, Z.; Zhao, X.*; Hu, Q*; Radamson, H.*; “A SiGe/Si Nanostructure with Graphene Absorbent for Long Wavelength Infrared Detection”,ACS Applied Nano Materials, 2023, 6, 17, 15749.

  8. Zhao, L.†; Tan, P.†; Luo, D.; Dar M. I.; Eickemeyer, F. T.; Arora N.; Hu, Q.*; Luo, J.; Liu, Y.*; Zakeeruddin, S. M.; Hagfeldt A.;W.; Huang, W.; Gong, Q.; Thomas P. R.; Friend, R. H; Gratzel, M.*; Zhu, R.*; “Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids Interfacial Stabilization for Inverted Perovskite Solar Cells with Long-term Stability”, Science Advance, 2022, 8, eabo3733.

  9. Li, Y.†; Hu, Q.†; Ding, H.; Hu, J.; Wang, S.*, Tu, Y.; Zhu, J.*; “Charge Exciton Formation in Compact Polycrystalline Perovskite Thin Films”, ACS Photonics, 2022, 9, 1614-1620.

  10. Tan, P.†; Zou, Y.†; Zhao, X.*; Hou, X.; Zhang, Z.; Ding, M.; Yu, S.; Ma, X.; Xu, G.; Hu, Q.*; Long, S.; “Hysteresis-free Ga2O3 Solar-blind Phototransistor Modulated from Photoconduction to Photogating Effect”, Applied Physics Letters, 2022, 120, 071106.

  11. Song, J.†; Hu, Q.†; Zhang, Q.; Xiong, S.; Zhao, Z.; Ali, J.; Zou, Y.; Feng, W.; Yang, Z.; Bao, Q.; Zhang, Y.; Thomas P. R.; Liu, F.*; “Manipulating the Crystallization Kinetics by Additive Engineering toward High-Efficient Photovoltaic Performance”, Advanced Functional Materials, 2021, 2009103.

  12. Chen, W.†; Han, B.†; Hu, Q.†; Gu, M.; Zhu, Y.; Yang, W.; Zhou, Y.; Luo, D.; Liu, F.; Cheng, R.; Zhu, R.; Feng, S.; Djurisic, A. B.*; Thomas P. R.*; He, Z.*; “Interfacial Stabilization for Inverted Perovskite Solar Cells with Long-term Stability”, Science Bulletin, 2021, 66, 991-1002.

  13. Li, Y.†; Hu, Q.†; Wang, P.†; Chopdekar, R.; Scholl, A.; Zhao, Z.; Zou, Y.; Utama, M.I.B.; Wang, F.; Barnes, M.; Zhang, Y.;Russell, T. P.*;Liu, F.*; “Surface and Grain Boundary Carbon Heterogeneity in CH3NH3PbI3 Perovskites and Its Impact on Optoelectronic Properties”, Applied Physics Reviews, 2020, 7, 041412. (“Feature Article”of Applied Physics Reviews )

  14. Hu, Q.†; Chen, W.†; Yang, W.†; Li, Y.; Larson, B. W.; Johnson, J.C.; Lu, Y.; Zhong, W.; Klivansky L.; Wang, C.; Salmeron, M.; Djurišić, A.B.; Liu, F.*; He, Z.*; Zhu, R.*; Russell, T. P.*; “Improving Efficiency and Stability ofPerovskite Solar Cells Enabled by A Near-Infrared-Absorbing Moisture Barrier”, Joule, 2020,4, 1575-1593.

  15. Song, J.†; Zhuo, G.†; Chen, W.†; Zhang, Q.; Ali, J.; Hu, Q.*; Wang, J.; Wang, C.; Feng, W.; Djurišić, A.B.; Zhu, H.; Zhang, Y.; Russell, T. P.*; Liu, F.*; “Unraveling the Crystallization Kinetics of 2D Perovskites with Sandwich-Type Structure for High-Performance Photovoltaics”, Advanced Materials, 2020, 2002784.

  16. Zhong, W.†; Hu, Q.†; Ying, L.*; Jiang, Y.; Li, K.; Zeng, Z.; Liu, F.*; Wang, C.*; Russell, T. P.*; Huang, F.*; Cao, Y.; “Manipulating FilmMorphology of All-Polymer Solar Cells by Incorporating Polymer Compatibilizer”, Solar RRL,2020, 4, 2000148.

  17. Fan, P.; Sun, W.; Zhang, X.; Wu, Y.; Hu, Q.*; Zhang, Q.*; Yu, J.*; Russell, T. P.*; “Bifunctional Bis-benzophenone as A Solid Additive for Non-Fullerene Solar Cells”, Advanced Functional Materials, 2020, 2008699.

  18. Zhong, W.†; Hu, Q.†; Jiang, Y.; Chen, T. L.; Ying, L.*; Liu, F.*; Wang, C.*; Liu, Y.; Huang, F.; Cao,Y.; Russell, T. P.*; “In Situ Structure Characterization in Slot-Die-Printed All-Polymer Solar Cellswith Efficiency Over 9%”, Solar RRL, 2019, 3, 1900032.

  19. Yang, W.†; Su, R.†; Luo, D.; Hu, Q.*; Zhang, F.; Xu, Z.; Wang, Z.; Tang, J.; Lv, Z.; Yang, X.; Tu, Y.; Zhang, W.; Zhong, H.*; Gong, Q.; Russell, T. P.*; Zhu, R.*; “Surface Modification Induced by Perovskite Quantum Dots for Triple-cation Perovskite Solarcells”, Nano Energy, 2019, 67, 104189.

  20. Chen, W.†; Sun, H.†; Hu, Q.†; Djurišić, A.B.; Russell, T. P., Guo, X.; He, Z.*; “High Short-CircuitCurrent Density via Integrating the Perovskite and Ternary Organic Bulk Heterojunction”, ACS Energy Letters, 2019, 4, 2535-2536.

  21. Luo, D.†; Yang, W.†; Wang, Z.†; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J.F.; Xu, Z.; Liu, T.; Chen, K.; Ye, F.; Wu, P.; Zhao, L.; Wu, J.; Tu, Y.; Zhang, Y.; Yang, X.; Zhang, W.*; Friend, R.H.; Gong, Q.; Snaith, H. J.*;Zhu, R.*; “Enhanced Photovoltage for Inverted Planar Heterojunction Perovskite Solar Cells”, Science, 2018, 360, 1442-1446. (“Highly Cited Paper”from Web of Science)

  22. Hu, Q.†; Zhao, L.†; Wu, J.; Gao, K.; Luo, D.; Jiang, Y.; Zhang, Z.; Zhu, C.; Schaible, E.; Hexemer,A.; Wang, C.; Liu, Y.; Zhang, W.; Gratzel, M.; Liu, F.*; Russell, T. P.*; Zhu, R.*; Gong, Q.; “In situDynamic Observations of Perovskite Crystallisation and Microstructure Evolution Intermediated From [PbI6]4- Cage Nanoparticles”, Nature Communications, 2017, 8, 15688.

  23. Chen, K.†; Hu, Q.†; Liu, T.†; Zhao, L.; Luo, D.; Wu, J.; Zhang, Y.; Zhang, W.; Liu, F.; Russell, T.P.; Zhu, R.*; Gong, Q.; “Charge-Carrier Balance for Highly Efficient Inverted PlanarHeterojunction Perovskite Solar Cells”, Advanced Materials, 2016, 28, 10718-10724.

  24. Liu, T.†; Hu, Q.†; Wu, J.; Chen, K.; Zhao, L.; Liu, F.*; Wang, C.; Lu, H.; Jia, S.; Russell, T.P.*; Zhu,R.*; Gong, Q.; “Mesoporous PbI2 Scaffold for High-Performance Planar HeterojunctionPerovskite Solar Cells”, Advanced Energy Materials, 2016, 6 (3), 1501890. (“Highly Cited Paper” from Web of Science)

  25. Hu, Q.†; Liu, Y.†; Li, Y.; Ying, L.; Liu, T.; Huang, F.*; Wang, S.; Huang, W.; Zhu, R.*; Gong, Q.; “Efficient and Low-temperature Processed Perovskite Solar Cells Based on A Cross-linkableHybrid Interlayer”, Journal of Materials Chemistry A, 2015, 3, 18483-18491. (“Hot Article”for 2015 in Journal of Materials Chemistry A)

  26. Hu, Q.; Wu, J.; Jiang, C.; Liu, T.; Que, X.; Zhu, R.*; Gong, Q.*, “Engineering of Electron-SelectiveContact for Perovskite Solar Cells with Efficiency Exceeding 15%”, ACS Nano, 2014, 8,10161-10167. (“Highly Cited Paper”from Web of Science, “Most Read”article during 11/2014 -12/2014 in ACS Nano)